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ABSTRACT

Salinity dynamics in a simple two-box model of the thermohaline circulation (THC) is considered. The model
parameterizes fluctuating eddy transport and buoyancy forcing by two independent stochastic processes. The
associated stationary probability density function is calculated analytically, and its structure is analyzed in the
space of the three parameters of the model. It is found that over a broad range of model parameters in which
the stationary density is technically bimodal, the population of one regime is very much larger than that of the
other, so the system behaves effectively unimodally. This preferential population of one regime is denoted
stabilization. This phenomenon is only relevant if the timescale of THC variability is less than the mean residence
times of the destabilized regime, so that the system may be described by its stationary probability density. These
average residence times are calculated, and it is found that stabilization occurs over a broad range of parameter
values. The stabilization phenomenon has important consequences for the stability of the THC. It is shown that
the inclusion of stochastic processes in the model results in random hysteresis responses to steady changes in
freshwater forcing, such that the transitions between regimes generally occur some distance away from the
bifurcation points at which transitions occur in the deterministic model.

1. Introduction

The thermohaline circulation (THC) of the World
Ocean is believed to play a central role in climate var-
iability on timescales from decades to millennia,
through both its internal dynamics and its response to
external forcing (see, e.g., Weaver and Hughes 1992).
In the Atlantic Ocean, as it operates today, the THC has
the net effect of transporting a tremendous quantity of
heat northward, with significant consequences for the
climate of northwest Europe (Rahmstorf 1999). How-
ever, it has become clear that the present configuration
of the THC may not be the only one it can take. In-
vestigations involving both simple heuristic models
(e.g., Stommel 1961; Rahmstorf 1996; Scott et al. 1999;
Stone and Krasovskiy 1999; Titz et al. 2001) and com-
plex general circulation models (GCM; e.g., Manabe
and Stouffer 1988; Hughes and Weaver 1994; Rahms-
torf 1995, 1996; Tziperman 2000) indicate that the THC
may display multiple regimes of circulation, transitions
between which are very rapid relative to the length of
time spent within a regime. Furthermore, evidence of
rapid shifts in the climate state abounds in the geological
record, with timescales from those of glaciation cycles
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to higher frequency, millennial scale fluctuations (e.g.,
Bond et al. 1997; Alley 2000; Stocker and Marchal
2000).

Simple box models have demonstrated a remarkably
good ability to reproduce the multiple regimes of cir-
culation demonstrated in full GCMs. They are an at-
tractive conceptual tool because of both their extremely
low computational cost and the small number of param-
eters that govern their dynamics. Considerable attention
has been paid to both purely deterministic models (e.g.,
Stommel 1961; Maas 1994; Rahmstorf 1996; Scott et
al. 1999) and to models with a stochastic component
(e.g., Stommel and Young 1993; Cessi 1994; Griffies
and Tziperman 1995; Lohmann and Schneider 1999;
Timmermann and Lohmann 2000). For deterministic
models, the natural framework of analysis is dynamical
systems theory, and discussion centers on the nature and
stability of attractors admitted by the model, and on the
nature and location of bifurcations. Analysis of the sto-
chastic class of models proceeds from the theory of
stochastic differential equations (Gardiner 1997). At-
tention in these models has primarily been focused on
the nature of the spectrum and on gross features of the
stationary distribution.

A study combining perspectives from both stochastic
analysis and dynamical systems theory was that of Tim-
mermann and Lohmann (2000), in which changes in the
qualitative behavior of the stationary distribution of the
meridional salinity gradient with changes in bifurcation
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parameters were mapped out. In this study, we extend
the analysis of Timmermann and Lohmann using a
somewhat more general model. We demonstrate that for
broad, and physically reasonable, regions of parameter
space, although the stationary distribution is technically
bimodal, the population of one regime is so much great-
er than that of the other that the system behaves uni-
modally for all intents and purposes. This stabilization
of one regime relative to another can have significant
consequences for analyses of the stability of these re-
gimes.

Section 2 below introduces the generalization of
Stommel’s two-box model, from which we derive a sim-
pler approximation in section 3. The stationary distri-
bution of this simpler model is obtained analytically,
and its structure throughout phase space is analyzed. In
section 4, the average residence times of the two regimes
are calculated for those regions of phase space in which
the stationary distribution is bimodal. An important
piece of information provided by these residence times
is the region of parameter space in which the stationary
distribution is relevant for understanding the finite-time
behavior of the model. Section 5 applies the above re-
sults to an analysis of the hysteresis behavior of the
model, and discusses the consequences of these results
for discussions of climate stability. A summary and con-
clusions are presented in section 6.

2. The model

We begin with a slightly modified Stommel (1961)
two-box model for the thermohaline circulation of the
North Atlantic:

d |q|
DT 5 2 DT 2 jDT 1 G(DT 2 DT ) (1)odt V

d |q| SoDS 5 2 DS 2 jDS 1 (P 2 E ). (2)
dt V h

In the above, DT and DS represent, respectively, the
differences between the box-average temperature and
salinity of the high-latitude and middle-latitude boxes.
These boxes are taken to be of the same volume V and
depth h. The strength of the volume-mean flow between
the boxes, q, is given by the Stommel (1961) ansatz:

q 5 c(aDT 2 bDS). (3)

The salinity difference is driven by a prescribed fresh-
water flux P 2 E, which can in principle depend on the
temperature difference DT, and the temperature differ-
ence is relaxed on the timescale G21 to the ‘‘climato-
logical’’ value DTo. A reference salinity So is introduced
to convert the freshwater flux into a salinity flux.

Traditional formulations of box models assume that
the temperature and salinity are well mixed within each
box, so that the only transport of these quantities is by
the bulk flux q. Of course, the temperature and salinity
fields of the ocean display considerable spatial structure,

and eddy transports (up to gyre-scale circulations) could
constitute a nontrivial term in the heat and salinity bud-
gets of each box. We parameterize the eddy transport
between the boxes in terms of the mean quantities DT
and DS by introducing an effective eddy diffusivity j.
We further assume that j fluctuates in time, and param-
eterize it as a stochastic process. This process is not
constrained to be positive, so eddy transport between
the boxes may be upgradient (e.g., Nakamura and Chao
2000). In what follows, the process j will be assumed
to be an Ornstein–Uhlenbeck process:

1 S1 ˙j̇ 5 2 j 1 W , (4)1t* t*

where W1 is a Wiener process (Gardiner 1997). Note
that in the limit t* → 0, becomes the white noisej̇
process S1 Ẇ1.

In the interests of model parsimony, we have made
three more assumptions that should be noted. First, we
have assumed equal eddy diffusivities for temperature
and salinity; in principle, the two diffusivities should
be represented by separate (although presumably not
independent) stochastic processes. As well, we have as-
sumed that j is Gaussian and of mean zero. Relaxing
the last assumption would involve the introduction of a
parameter that could tune the relative frequency of up-
gradient and downgradient eddy fluxes.

Finally, we will generalize the model to introduce the
effects of fluctuations in the freshwater flux:

S So o ˙(P 2 E ) → (P 2 E ) 1 S W , (5)2 2h h

where W2 is a second Wiener process, independent of
W1. More generally, we could consider fluctuations in
the freshwater flux with a finite autocorrelation time.
However, these fluctuations are meant to represent at-
mospheric phenomena that presumably evolve on much
shorter timescales than those of oceanic variability. In
the interest of keeping the model as simple as possible,
we will consider only white noise fluctuations in the
freshwater flux.

Defining the nondimensional quantities

caDTot̂ 5 t (6)
V

1
x 5 DT (7)

DTo

b
y 5 DS (8)

aDTo

V
h 5 j, (9)

caDTo

we nondimensionalize the equations (1), (2), and (4) to
obtain:
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ẋ 5 2|x 2 y|x 2 hx 1 g(1 2 x) (10)

˙ẏ 5 2|x 2 y|y 2 hy 1 m 1 s W (11)2 2

1 s 1 ˙ḣ 5 2 h 1 W , (12)1t t

where from now on all time derivatives are with respect
to t̂. In the above,

V
g 5 G (13)

caDTo

bVS (P 2 E )om 5 (14)
2ch(aDT )o

1/2
2b V

s 5 S (15)2 23[ ]c(aDT )o

caDTot 5 t* (16)
V

1/2V
s 5 S . (17)1 11 2caDTo

To obtain Eqs. (15) and (17), we have used the fact
that

1/2dW caDT dWo5 (18)1 2dt V dt̂

for a Wiener process W. Adopting the same parameter
values as Timmermann and Lohmann (2000): a 5 0.15
K21, c 5 17 3 106 m3 s21, V 5 2 3 1015 m3, and DTo

5 15 K, we find that t 5 (1.66 yr) t̂.
Equations (10)–(12) constitute a stochastic differ-

ential equation (SDE) for the three-dimensional Mar-
kov process (x, y, h) whose associated probability den-
sity function satisfies a Fokker–Planck equation (FPE;
Gardiner 1997). This system is still too complicated
to admit analytic solutions; in particular, the associated
FPE is a partial differential equation in one time and
three state variables. The following section introduces
a simplification of the model that admits analytic re-
sults.

3. Simplified model

The set of equations (10)–(12) describe an SDE in
R3 with five adjustable parameters. The following pair
of approximations reduces the system to a one-dimen-
sional SDE with three parameters. First, we will assume
that the temperature relaxation timescale is very short,
g k 1, so that x does not deviate from unity. In this
limit, the equation for y becomes

˙ẏ 5 2 | 1 2 y | y 2 hy 1 m 1 s W .2 2 (19)

Second, we will assume that the autocorrelation time-
scale of the stochastic process h is also very short,

t → 0, so h → s1Ẇ1. Written in differential form, the
resulting SDE for y is

dy 5 (2|1 2 y|y 1 m)dt 2 s y + dW 1 s dW , (20)1 1 2 2

where the stochastic differential y + dW2 is interpreted
in the Stratonovich sense [descriptions of the difference
between Ito and Stratonovich SDEs are given in Penland
(1996) and in Gardiner (1997)]. In the limit that s1 →
0, this model is similar to that considered by Cessi
(1994).

Equation (20), with s2 5 0, was obtained by Tim-
mermann and Lohmann (2000) in a different manner.
They did not consider oceanic eddy transports, but as-
sumed that the temperature dynamics was completely
described by an Ornstein–Uhlenbeck process, such that
in the present notation x 5 1 1 h. However, to obtain
equation (20), Timmermann and Lohmann were obliged
to arbitrarily remove the process h from within the ab-
solute value signs. This was necessary to produce a
model to which the standard techniques of stochastic
analysis could be applied, in the t → 0 limit, but cannot
be rigorously justified. In fact, the limiting distribution
as t → 0 for the model in which h remains within the
absolute value operator can be shown to be a trivial
delta function at the origin (Peter Imkeller 2000, per-
sonal communication). The white noise limit in the orig-
inal formulation of Timmermann and Lohmann does not
produce physically reasonable results.

The Fokker–Planck equation for the probability den-
sity function (PDF) of the process y, p(y), is given by

2s 1] p 5 2] 2|1 2 y|y 1 m 1 y pt y 1 2[ ]2

1
2 2 2 21 ] [(s y 1 s )p]. (21)yy 1 22

The stationary distribution ps satisfies ] tps 5 0 and is
given by the ordinary differential equation

1 
22|1 2 y|y 1 m 2 s y 1dp 2 s  5 2 dy, (22)

2 2 2p s y 1 s s 1 2

which when integrated gives for y , 1:

22 s s2 1p (y) 5 N exp 2y 1 1 1 2 ms 25 1 2[s s s1 1 2

s s1 121 213 tan y 2 tan1 2 1 2[ ]s s2 2

2 2 2 2s 1 2 s y 1 s1 1 21 ln , (23)
2 21 2 6]4 s 1 s1 2

and for y . 1:



JULY 2002 2075M O N A H A N

FIG. 1. Phase diagram of the number of peaks in the stationary
distribution (23)–(24). In the regions R(y2) and R(y1) only the peaks
at y2 and y1 exist, respectively. In the region R(y6), the distribution
is bimodal.

FIG. 2. Contour plot of stationary distribution ps(y) as a function
of m for s1 5 0.1, s2 5 0.1. Contours: 0.5, 1, 1.5, . . . , 6. The thick
horizontal lines denote the boundaries between which ps has two
maxima.

22 s s2 1p (y) 5 N exp y 2 1 2 1 ms 25 1 2[s s s1 1 2

s s1 121 213 tan y 2 tan1 2 1 2[ ]s s2 2

2 2 2 2s 2 2 s y 1 s1 1 21 ln . (24)
2 21 2 6]4 s 1 s1 2

The quantity N is a normalization constant. In the limit
s2 → 0, ps reduces to the stationary distribution cal-
culated by Timmermann and Lohmann (2000).

Having calculated the stationary distribution ps, we
now systematically investigate its behavior in the space
of parameters m, s1, and s2. We first note that, just as
for a range of parameter values the deterministic Stom-
mel model admits two stable fixed points, ps is bimodal
in a certain domain of parameter space. Extrema of ps

occur where its derivative with respect to y vanishes;
from (22), this occurs when

1
20 5 2|1 2 y|y 1 m 2 s y. (25)12

Note that s2 plays no role in determining the number
or location of extrema in the stationary distribution ps,
as the noise process with which it is associated enters
equation (20) additively. Equation (25) has three solu-
tions for m, s1 satisfying the inequalities:

222 1 4Ïm , s , 2m , 2.1 (26)

In this region, denoted R(y6), there are maxima at

22 21 s 1 s1 1y 5 1 2 1 2 m (27)2 1 2!2 4 2 4

22 21 s 1 s1 1y 5 2 1 1 2 m, (28)1 1 2!2 4 2 4

and a minimum at

22 21 s 1 s1 1y 5 1 1 1 2 m. (29)o 1 2!2 4 2 4

Outside of R(y6), the stationary distribution is unimodal.
In the regions R(y2) and R(y1) only the peaks at y2 and
y1 exist, respectively. These three regions are illustrated
in Fig. 1. Note that along the line 2m 5 for s1 .2s1

, the points y1 and y2 coincide with value 1.Ï2
Timmermann and Lohmann (2000) concentrated on

the behavior of ps(y) for s2 5 0, m 5 0.25, and s1 .
0.3. A calculation of the average rate at which the mean
flow q changes sign (not shown) demonstrates that for
s1 above 0.3, for most of the range of m, sign changes
occur on centennial or shorter timescales. Such rapid
fluctuations in the sign of q are physically unreasonable.
Consequently, in this paper, we will concentrate on the
lower noise limit, s1 , 0.2. Similarly, for the fluctua-
tions in freshwater flux, we will concentrate on the range
s2 , 0.2.

Within the parameter region R(y6), the distribution
ps(y) is bimodal. For the range of s1, s2, we are con-
sidering, however, throughout much of R(y6) the rela-
tive populations of each regime are very different. Fig-
ure 2 displays a plot of ps(y) as a function of m for s1

5 0.1, s2 5 0.1. The thick horizontal lines in Fig. 2
correspond to the values of m between which ps has two
maxima. It is clear that over most of the range for which
ps is bimodal, only one of the peaks is significantly
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FIG. 3. Contour plot of stationary distribution ps(y) as a function
of s2 for m 5 0.205, s1 5 0.1. Contours: 0.5, 1, 1.5, . . . , 10.5.

FIG. 4. Contour plot of (a) E(y) and (b) {E[(y 2 E(y))]2}1/2, where E( · ) denotes the expectation
operator with respect to ps, for m 5 0.19. For these parameter values, y2 . 0.25 and y1 . 1.16.

populated. The stationary density is only effectively bi-
modal for a small range of m near the value 0.19. At
this pair of noise strengths (s1, s2), for most values of
m, the stationary behavior of the system will be more
like that of a system with a unimodal distribution than
with a bimodal. We will use the term stabilization to
denote the preferred population, reflected in the sta-
tionary PDF, of one regime relative to the other. Of
course, in the presence of noise, neither regime is strictly
speaking stable; they are both metastable. However, a
substantial asymmetry in the relative populations of the
two regimes reflects a distinct preference of the system
for one regime over the other; it is this phenomenon
that we denote by the term stabilization.

Figure 3 contours ps(y) as a function of s2 for m 5
0.205 and s1 5 0.1. Note that while s2 does not affect
the positions of the extrema of ps, as discussed above,
it does affect the relative population of the two regimes,
and in a complicated manner. For the smallest values

of s2, the regime around y2 is more populated than that
around y1. As s2 increases, the mass shifts to the regime
around y1. However, as s2 increases further, the pop-
ulation of the regime around y2 begins to increase again.

The nontrivial dependence of the stationary PDF, ps,
on the parameters (m, s1, s2) is succinctly illustrated
through consideration of the first two moments of the
distribution. Figures 4a and 4b contour, respectively, the
mean and standard deviation of ps as a function of s1

and s2 for m 5 0.19. For these parameter values y2 .
0.25 and y1 . 1.16. It is clear from Figs. 4a and 4b
that for small values of s1, the regime around y1 is
favored, for most values of s2 considered. Conversely,
for small values of s2, it is the regime around y2 that
is more populated for most of the range of values of s1

under consideration. It is interesting to note the coun-
terintuitive result that there are regions in parameter
space in which increasing either s1, s2, or both, can
actually lead to a decrease in the size of the fluctuations
of y, as one regime becomes stabilized.

Figure 5 contours the mean and standard deviation
of y for m 5 0.15. For this value of m, it is clear that
for the range of s1, s2 considered, the PDF remains
effectively unimodal around y2. As well, the mean and
variance of y are much more sensitive to s2 than they
are to the value of s1. The dependence of the mean and
standard deviation of y on s1 and s2 for m 5 0.23 is
displayed in Fig. 6. Here, for a broad range of values
of s1 and s2, the distribution is effectively unimodal
and concentrated around y1. In contrast to the behavior
at m 5 0.15, the mean and standard deviation are more
or less equally dependent on the values of s1 and s2.

The general picture emerges that for m below (above)
a certain window, the population of the regime around
y2 (y1) is stabilized. Within this window, the popula-
tions of the two regimes are of comparable size. We can
characterize the location of this window of effective
bimodality by defining the surface m0.5(s1, s2) as the
value of m, for a given (s1, s2), for which the stationary
probability of y being in either regime is equal; that is,
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FIG. 5. As in Fig. 4 but for m 5 0.15. For these parameter values, y2 . 0.18 and y1 . 1.13.

FIG. 6. As in Fig. 4 but for m 5 0.23. For these parameter values, y2 . 0.36 and y1 . 1.19.

yo

dy p (y; s , s , m )E s 1 2 0.5

2`

`

5 dy p (y; s , s , m ). (30)E s 1 2 0.5

yo

This surface is contoured as a function of s1 and s2 in
Fig. 7a. For the range of s1, s2 considered, m0.5 falls
between 0.17 and 0.22. For m , m0.5, the regime cen-
tered about y2 will dominate that about y1, and con-
versely for m . m0.5. Figure 7b characterizes the width
of the window around m0.5 within which the probabilities
of being in either regime differ by less than a factor of
10. Note that this window is not symmetric about m0.5.
Clearly, the smaller the noise level, the sharper is the
change in ps as m passes through m0.5. Even for inter-
mediate noise strength, the change may be rather abrupt,
as is demonstrated in Fig. 2.

In summary, for the range of noise strengths s1, s2

under consideration, there exists a range of values of
the parameter m for which the regimes centered around
y2 and y1 are both significantly populated, as described

by the stationary PDF ps, and the distribution is effec-
tively bimodal. As the noise strengths decrease, this
window shrinks to a point. For values of m below this
window, almost all of the mass of ps is concentrated
around y2, and the stationary PDF is effectively uni-
modal. For m above this window, the stationary PDF is
also essentially unimodal, with all of its mass concen-
trated around y1. The phenomenon of stabilization pro-
vides an example of the manner in which fluctuations
can be important in determining the mean state of a
nonlinear stochastic system.

The phenomenon of stabilization is easily understood
in the case of a 1D system moving in a two-well po-
tential under the influence of additive noise:

˙ẋ 5 2] V 1 sW,x (31)

for which the stationary PDF is

V
p (y) 5 N exp 2 . (32)s 21 22s

If the potential has minima at x2 and x1, then the PDF
will have peaks at these points. The ratio of the peaks
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FIG. 7. (a) Contour plot of m0.5, the value of m such that the system is equally likely to be in
either regime, as a function of s1 and s2. (b) Contour plot of the window in m around m0.5 for
which the ratio of the stationary probabilities of being in one regime is less than a factor of 10
of being in the other.

of the PDF is determined by the difference in depth of
the two potential wells:

p (x ) V(x ) 2 V(x )s 1 2 15 exp . (33)
2[ ]p (x ) 2ss 2

For a fixed difference in well depth, the difference in
populations between regimes is amplified as s decreas-
es, as was noted by Molteni and Tibaldi (1990) and
Gardiner (1997).

Stabilization is clearly not limited to potential systems
driven by additive noise; the model (20) is not driven
just by additive white noise, so the above argument does
not apply. Furthermore, numerical investigations (not
shown) involving finite noise autocorrelation time t, or
temperature relaxation timescale g 21, for which the de-
terministic part of the dynamics does not correspond to
the gradient of a potential, indicate that the phenomenon
of stabilization is qualitatively unchanged.

So far we have considered only the stationary PDF
ps, which, starting from the initial condition y 5 y(0)
at t 5 0, describes the distribution of y as t → `. For
finite times, the stationary distribution may not provide
a complete description of the system, and must be sup-
plemented by a consideration of the residence times
within each of the regimes. This is discussed in the
following section.

4. Residence times and the deterministic limit

In the limit that s1 and s2 become very small, the
behavior of the stochastic model (20) should converge
in some sense to that of the deterministic model

ẏ 5 2 | 1 2 y | y 1 m. (34)

This equation has two stable and one unstable fixed
points for 0 , m , 0.25, whose positions are given,
respectively, by Eqs. (27)–(29) with s1 5 0. In a de-

terministic system with multiple stable fixed points, the
asymptotic state of the system as t → ` is determined
entirely by the basin of attraction in which the initial
conditions lie. For this simple system, the boundary
between the basins of attraction of y2 and y1 is the
unstable fixed point y0.

However, in the stochastic system, the asymptotic be-
havior is described by the stationary PDF, independent
of the initial conditions. We have seen above that for
small s1 and s2, within the range of values of m for
which the distribution is bimodal, there is only a narrow
window in which the populations of the two regimes
are of comparable size. In the limit that s1 and s2 go
to zero, this window, centered on m0.5, shrinks to a point:
for m , m0.5, the entire mass of ps is concentrated around
y2, and for m . m0.5 around y1, independent of the
initial conditions. Thus, the t → ` description of the
stochastic system for small s1 and s2 is completely
different than that of the deterministic system. Com-
pounding the problem is that the limiting value of m0.5

for vanishing noise strengths is not unique, but depends
on how the limit is taken. In particular,

lim lim m 5 0.2086, (35)0.5
s →0 s →01 2

while

lim lim m 5 0.1703. (36)0.5
s →0 s →02 1

The key to reconciling the stochastic and determin-
istic descriptions of the system in the limiting case lies
in the consideration of the residence times. Denoting by
^T(y2)& and ^T(y1)& the respective average residence
times of the system in the regimes around y2 and y1, a
standard result yields
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FIG. 8. Base 10 logarithm of mean residence times (a) ^T(y2)&, (b) ^T(y1)&, in nondimensional
time units, as a function of s1 and s2 for m 5 0.19.

FIG. 9. As in Fig. 8 but for m 5 0.15.

y xo dx
^T(y )& 5 dz p (z) (37)2 E E sp (x)B(x)sy 2`2

y 2`1 dx
^T(y )& 5 dz p (z), (38)1 E E sp (x)B(x)sy xo

where
2 2 2B(y) 5 s y 1 s1 2 (39)

(Gardiner 1997). For the physical problem at hand,
namely, the dynamics of the thermohaline circulation,
there is a characteristic timescale T̃ such that if the av-
erage escape time for a regime is much greater than T̃,
and if the initial conditions lie in this regime, then the
system will for all practical considerations remain in
this regime. If the average residence times of both re-
gimes are much larger than T̃, then, practically speaking,
the system will for the vast majority of realizations re-
main within the domain of attraction in which it started
and the asymptotic behavior of the system will be de-
scribed by only that part of the stationary distribution
within this regime. The entire stationary distribution ps

is of relevance only if the system has time enough to

sample the complete range of state space to which it
theoretically has access. This will not be the case if the
average escape times are much longer than any physi-
cally relevant timescale. As s1 and s2 go to zero, the
average residence times of both regimes become infinite.
It is in this sense that the deterministic limit arises as
the noise strength vanishes. This can be expressed for-
mally by the inequality:

lim lim (dynamics) ± lim lim (dynamics). (40)
t→` noise→0 noise→0 t→`

It is the first pair of limits that yields the deterministic
limit.

Figures 8–10 contour ^T(y2)& and ^T(y1)& (in non-
dimensional time units) as functions of s1 and s2 for
m 5 0.19, m 5 0.15, and m 5 0.23, respectively. Re-
membering that one nondimensional time unit corre-
sponds to 1.66 yr, these figures may be essentially read
as being in years. For millennial-scale variability of the
THC, reasonable values of T̃ are on the order of 104–
105 yr. For m 5 0.19, there are broad regions of (s1,
s2) space for which ^T(y2)& and ^T(y1)& are of about
the same size, and both are less than T̃. Within such
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FIG. 10. As in Fig. 8 but for m 5 0.23.

regions, the distribution of y will be realizably bimodal,
independent of the initial conditions, and consistent with
ps. In other parts of (s1, s2) space, while both residence
times are less than T̃, one is very much larger than the
other. In these regions, the system will behave in an
effectively unimodal fashion, as described by the sta-
tionary PDF, and independent of initial conditions. Fi-
nally, for smaller values of s1 and s2, the residence
times of both regimes are much larger than T̃. For these
parameter values, the stationary PDF (23)–(24) will be
essentially irrelevant, and the system will fluctuate for
all time (practically speaking) within the basin of at-
traction in which it started.

For m 5 0.15 (Fig. 9), ^T(y2)& is everywhere larger
than ^T(y1)&, usually by at least an order of magnitude.
For sufficiently large s1, s2, ^T(y2)& is less than T̃, and
transitions to the regime centered around y1 will occur.
However, the time spent near y1 will be typically much
less than that spent near y2, so at finite times the regime
around y2 will be stabilized relative to that around y1

at these noise levels. For m 5 0.23, as is demonstrated
in Fig. 10, ^T(y2)& is everywhere much smaller than
^T(y1)&, and it is the regime around y1 that is stabilized
relative to that around y2 for sufficiently large s1, s2.
For both m 5 0.15 and m 5 0.23, for small enough s1,
s2, ^T(y2)& and ^T(y1)& are both much greater than T̃
and the description of the system by the stationary dis-
tribution will not be relevant for finite times.

Thus, for a broad range of values of s1, s2, and m,
the average residence times ^T(y2)& and ^T(y1)& are suf-
ficiently different and sufficiently small that, on millen-
nial timescales, one regime is stabilized relative to the
other, irrespective of the initial conditions. The inclusion
of noise, strong enough that the residence times are
sufficiently small that the stationary distribution is rel-
evant on finite timescales, produces a substantially dif-
ferent description of the system than the deterministic
model, for which the system is bistable over a broad
range of values of m. The inclusion of fluctuations dra-
matically reduces this region of bistability. This differ-

ence in descriptions has a direct bearing on the issue of
the stability of the THC, to which we now turn.

5. Hysteresis loops and climate stability

As mentioned above, the deterministic equation (34)
has one unstable and two stable fixed points for 0 # m
# 0.25. At m 5 0, the larger stable fixed point, y1,
merges with the unstable fixed point; for m , 0 only
the smaller stable fixed point, y2, remains. At m 5 0.25,
the smaller stable fixed point merges with the unstable
fixed point in another bifurcation, and above m 5 0.25
only the larger stable fixed point remains. The bifur-
cation diagram is displayed in Fig. 11a. In the deter-
ministic limit, if m is varied from below 0 to above 0.25
and back down to below zero, the hysteresis response
illustrated in Fig. 11b is obtained. The qualitative char-
acter of this deterministic hysteresis loop is generic to
all simple models of the thermohaline circulation that
display multiple stable fixed points, and has been well-
discussed in the literature (e.g., Rahmstorf 1996). In this
deterministic loop, transitions between the two equilib-
ria occur exactly at the bifurcation points where one
equilibrium disappears.

As discussed above, a qualitative difference between
the stochastic and deterministic models is the potential
stabilization of one regime by the fluctuations. For the
range of (s1, s2) considered, there is a range of m, well
below the bifurcation point at y 5 0.25, within which
the stationary distribution favors the regime around y1.
Thus, if the residence time of the regime around y2 is
less than the timescale of the circuit around the loop,
T̃, then the jump to the upper branch will occur at a
random value of m, on average well before the bifur-
cation point at m 5 0.25. Similarly, moving down the
hysteresis loop, as m drops below m0.5, the stationary
distribution ps will be dominated by the regime around
y2. If ^T(y1)& is smaller than T̃, then the jump down to
the lower branch will most often occur at some random
value of m before the bifurcation point at m 5 0. It
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FIG. 11. (a) Plot of the unstable fixed point yo and the two stable fixed points y2 and y1 of the
deterministic system (34) as functions of m. There are bifurcations at m 5 0 and m 5 0.25. (b)
Hysteresis curve for the deterministic model (34) obtained by increasing m from 20.1 to 0.3 and
then decreasing back to 20.1. The arrowheads illustrate the sense of movement around the curve.

FIG. 12. Simulated hysteresis loops for the stochastic system (20) with noise levels (s1, s2):
(a) (0.05, 0.05), (b) (0.1, 0.05), (c) (0.05, 0.1), (d) (0.1, 0.1). The thick curve is the deterministic
hysteresis curve, plotted for comparison. The same realizations of the noise processes W1 and W2

were used in each simulation.

follows that the hysteresis loop, which is now random,
will be smaller in the stochastic case than in the deter-
ministic limit. Such an effect was noted in the study of
Wang et al. (1999), although it was not systematically
investigated. The difference between the deterministic
and stochastic hysteresis loops will be determined by
the values of s1 and s2, which control the residence

times of the two regimes, and by the rate at which m is
changed in the circuit around the loop.

Figure 12 displays sample hysteresis loops obtained
by numerical solution of equation (20) with a time-
varying value of m, for four different pairs of noise
strengths (s1, s2). The numerical simulations were car-
ried out using a simple forward-Euler discretization
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FIG. 13. As in Fig. 12 but with (s1, s2) 5 (0.075, 0.075) for four different realizations of W1

and W2.

FIG. 14. Gaussian kernel estimates of the PDF of the value of m
at which the transition occurs from the regime around y2 to that
around y1 as m increases (thin line), and the regime around y1 to that
around y2 as m decreases (thick line), for s1 5 0.075, s2 5 0.075.
The estimates are based on 1000 realizations of the hysteresis loop.

(Kloeden and Platen 1992). The parameter m is moved
from 20.1 to 0.3 over 2500 nondimensional time units,
and back down to 20.1 at the same rate. To emphasise
the differences induced by changing the noise levels
alone, the same realizations of the Wiener processes W1

and W2 were used in all four simulations. Even for the
fairly small noise levels (s1, s2) 5 (0.05, 0.05), the

hysteresis curve is substantially narrower than in the
deterministic limit. As the strength of the noise increas-
es, the hysteresis curves become narrower, on average.
Figure 13 displays the random hysteresis curves ob-
tained with four different realizations of the stochastic
processes W1 and W2, at the fixed noise level (s1, s2)
5 (0.075, 0.075). This figure demonstrates that, even
for moderate noise levels, there is considerable vari-
ability in the values of m at which the transitions occur.
Figure 14 displays estimates of the PDFs of the values
of m for which the jumps between regimes occur, for
(s1, s2) 5 (0.075, 0.075), based on 1000 realizations
of the hysteresis loop. For both transitions, the most
likely value of m at which the jump occurs is well sep-
arated from the deterministic bifurcation point. For
smaller noise strengths, these distributions tighten and
the most likely values of m for the jumps approach the
deterministic bifurcation points. For s1, s2 sufficiently
small, the residence times of the regimes are for all m
larger than the timescale of the circuit around the loop,
and the deterministic limit is recovered. On the other
hand, for sufficiently large noise strengths, the residence
times will be so much smaller than T̃ that more than
two jumps between the regimes will be made, and the
hysteresis loop structure is lost.

Multiple equilibria in the THC appear not only in
simple box models, but also in sophisticated general
circulation models (e.g., Manabe and Stouffer 1988;
Hughes and Weaver 1994; Rahmstorf 1995, 1996, 1999;
Tziperman 2000). Rahmstorf (1995, 1996) evaluated the
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hysteresis loop of a full ocean GCM coupled to a simple
atmosphere, and demonstrated that it could be fit rather
well to the hysteresis loop produced by a simple box
model. He was then able to estimate the position of the
present climate on the box model hysteresis curve, and
thereby estimate its proximity to the bifurcation point.
However, we have demonstrated that in the presence of
noise of even moderate strength, representing internal
and external high-frequency variability, transitions be-
tween climate regimes may occur some distance away
from the deterministic bifurcation points. Consequently,
the distance between the present climate state and the
deterministic bifurcation point may overestimate the sta-
bility of the present climate. Evidence for sensitivity of
the hysteresis structure of a GCM to both noise reali-
zation and strength is given in Wang et al. (1999).

Furthermore, the results above suggest a potential
problem with using even complex models to assess the
stability of the THC, assuming that our stochastic pa-
rameterizations are appropriate representations of high-
frequency variability. First, more than a single circuit
of the hysteresis loop by the simulation would need to
be carried out in order to estimate the distribution of
the jump points. Admittedly, for models of intermediate
complexity such as in Rahmstorf (1999), or for a full
GCM, it is computationally very expensive to carry out
multiple circuits around the hysteresis loop. However,
this could potentially be important to determine the var-
iability in the values of the control parameters at which
the transitions occur. Second, even complex models tend
to be biased toward low levels of internal variability.
This bias can arise from either the finite resolution of
the model or from the use of an uncoupled ocean model.
No current ocean GCMs used for diagnosis of the sta-
bility of the thermohaline circulation resolve mesoscale
eddies, and 2D ocean models do not resolve even gyre-
scale circulations. Their internal noise levels are then
presumably lower than those of the real ocean, perhaps
substantially so. Furthermore, many studies of the sta-
bility of the thermohaline circulation use uncoupled
ocean models, or ocean models coupled to toy atmo-
spheres. It is a generic feature of uncoupled ocean or
atmosphere models that they systematically underesti-
mate the variability observed in nature, as discussed by
Barsugli and Battisti (1998). Our simple stochastic box
model suggests that an underestimate of the noise level
in a more complex ocean model could lead to systematic
errors in the range of control parameters at which the
model is found to switch between climate equilibria.
These systematic errors would presumably be removed
through improved model resolution or coupling to an
atmospheric model, or potentially through the introduc-
tion of stochastic subgrid-scale parameterizations
(Palmer 2001).

6. Summary and conclusions
In this study, we have used a simple box model to

consider the effects on the thermohaline circulation of

both internal fluctuations, associated with unresolved
internal eddy variability, and external fluctuations, as-
sociated with atmospheric processes. Because of the ex-
treme simplicity of the model, a closed-form, analytic
expression for the stationary probability density func-
tion ps could be obtained from the associated Fokker–
Planck equation. This stationary density was found to
have a complicated dependence on the noise strengths
s1 and s2, and on the parameter m describing the dif-
ferential freshwater forcing between the boxes. In par-
ticular, it was demonstrated that for much of the param-
eter space in which ps is technically bimodal, in that it
can be shown to have two extrema, it is effectively uni-
modal, in that one regime is very much more populated
than the other. We denote this enhanced population of
one regime as stabilization. For a broad range of noise
levels within that part of parameter space in which the
distribution is technically bimodal, the populations of
the two regimes are comparable only for a small window
of m centered on the value m0.5. Figure 7a illustrates
that m0.5 itself lies within a small range of values of m.
We see then that in a nonlinear stochastic system, the
fluctuations may play a substantial role in determining
the mean state of the system.

The stationary distribution ps describes the behavior
of the system in the infinite time limit. For finite times,
it will only be relevant if the residence times of the two
regimes are small compared to the the relevant timescale
dictated by the physical process under consideration.
Here, this process is the THC and the timescale is on
the order of 104–105 yr. The simplicity of the model
allows us to easily evaluate these residence times. For
very small noise levels, the residence times are so large
that the finite-time behavior of the system shares the
feature with the deterministic system that the regime in
which the system resides over the timescale of interest
is determined by the initial conditions. However, there
exists a broad range of parameter space for which the
stationary distribution describes the behavior of the sys-
tem and stabilization by fluctuations is relevant.

Stabilization of the system by fluctuations has a sig-
nificant impact on the stability of the THC with regards
to changes in freshwater forcing. In the deterministic
limit, this may be described by a hysteresis loop, in
which rapid transitions between regimes occur precisely
at bifurcation points of the system. When fluctuations
are added to the description, the hysteresis loop becomes
random, and for intermediate noise strengths the tran-
sitions between regimes generally occur well away from
the deterministic bifurcation points. This result suggests
that fitting GCM output to simple deterministic models,
as in Rahmstorf (1995, 1996), may overestimate the
stability of the present climate. Furthermore, as GCMs
generally are biased toward lower noise levels than those
of the real world, this result also has bearing on GCM
estimations of climate sensitivity.

These results provide another simple illustration of
the idea put forward by Palmer (1999) that the effect



2084 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

of small perturbations on the climate system, such as
anthropogenic forcing, may be not to change the struc-
ture of the existing regimes of circulation, but their oc-
cupation statistics (assuming the system is sufficiently
far from a bifurcation point). Each of the parameters m,
s1, s2 considered in this study could conceivably be
altered by anthropogenic forcing, with consequent
changes in the populations of the regimes, especially
for m in the neighborhood of m0.5.

It is also worth noting that this study demonstrates
the importance of accurate discretization schemes for
the numerical solution of nonlinear SDEs. Inaccurate
discretizations can lead to substantial systematic errors
in the strength of the noise, as in Lagerloef (1995). The
qualitative behavior of the model considered in this
study is sensitive to the strengths of the stochastic fluc-
tuations, and simulations carried out using an inaccurate
discretization scheme could consequently be qualita-
tively inaccurate. The numerical solution of SDEs is
described in detail in Kloeden and Platen (1992).

The analysis presented in this study also demonstrates
the effects that stochastic fluctuations can have on the
bifurcation structure of a dynamical system. The sta-
tionary PDF displays bifurcation points at which it
changes from bimodal to unimodal; these bifurcations
are the distributional equivalents of the deterministic
bifurcations at which a stable fixed point disappears.
For the range of noise strengths considered here, the
bifurcations of the stationary PDF and the deterministic
system occur at not very different values of m. However,
because of stabilization, the bifurcation behavior of in-
dividual realizations is generally quite different than in
the deterministic case. An interesting analog occurs in
the effect of stochastic perturbations on Hopf bifurca-
tions. In a deterministic forward Hopf bifurcation from
a fixed point attractor, the asymptotic behavior of the
system changes from one in which there is no charac-
teristic oscillatory timescale to one characterized by a
dominant oscillatory timescale. In the stochastic setting,
the Hopf bifurcation is associated with changes in the
stationary PDF and Lyapunov exponents (Arnold et al.
1996), but individual realizations possess oscillatory
timescales that change smoothly through the bifurcation
point. In effect, the presence of fluctuations destroys the
bifurcation in the power spectrum present in the deter-
ministic limit, a result that is of significance to theories
of ENSO dynamics (Penland et al. 2000) and of inter-
decadal THC variability (Rivin and Tziperman 1997).
These results demonstrate that stochastic fluctuations
can have significant effects on important aspects of the
bifurcation structure of climatic dynamical systems.

The model we have investigated in this study is highly
simplified, even by the standards of box modeling. Be-
cause of the extreme simplicity of the model, no attempt
has been made to fit the parameters m, s1, or s2 to data
from observations or GCMs. Preliminary numerical in-
vestigations of the model (10)–(12) indicate that the
stabilization phenomenon is qualitatively unchanged for

nonzero g 21 and t. A physically meaningful quantitative
examination of stabilization of THC regimes by noise
would require more sophisticated models. A more dy-
namically significant, yet computationally efficient,
class of models is the zonally averaged 2D ocean cir-
culation models (e.g., Wright et al. 1998). This class of
models could potentially be used for more quantitative,
albeit numerical, studies of THC stabilization by noise.

Simple box models represent the most coarsely dis-
cretized extreme of models of ocean dynamics, and
should be interpreted accordingly. While their quanti-
tative features cannot be expected to be reliable, their
qualitative behavior can be quite instructive. The re-
markable correspondence between the general character
of the behavior of box models and that of complicated
GCMs demonstrated by Rahmstorf (1995, 1996) sug-
gests that their apparent simplicity belies their ability
to capture essential features of ocean dynamics. The
stochastic model considered above introduces the phe-
nomenon of stabilization that has important consequenc-
es for the dynamics of the model. The results of this
simple model suggest an interesting experiment, in
which a more complex model is run through as many
hysteresis loops as computing power allows. If the sto-
chastic parameterization of eddy variability is appro-
priate, the model should demonstrate random hysteresis
loops, and this experiment would allow the assessment
of their distribution. Such an experiment could be car-
ried out using different model resolutions in order to
vary the strength of the internal noise in the system.
Evidence of a nondeterministic character of the hyster-
esis loops would have important consequences for any
discussion of the stability of the THC.
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——, M. Flügel, and P. Chang, 2000: Identification of dynamical
regimes in an intermediate coupled ocean–atmosphere model. J.
Climate, 13, 2105–2115.

Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline cir-

culation in response to changes in the hydrological cycle. Nature,
378, 145–149.

——, 1996: On the freshwater forcing and transport of the Atlantic
thermohaline circulation. Climate Dyn., 12, 799–811.

——, 1999: Rapid transitions of the thermohaline ocean circulation:
A modelling perspective. Reconstructing Ocean History: A Win-
dow Into the Future, F. Abrantes and A. Mix, Eds., Kluwer
Academic/Plenum Publishers, 139–149.

Rivin, I., and E. Tziperman, 1997: Linear versus self-sustained in-
terdecadal thermohaline variability in a coupled box model. J.
Phys. Oceanogr., 27, 1216–1232.

Scott, J., J. Marotzke, and P. Stone, 1999: Interhemispheric ther-
mohaline circulation in a coupled box model. J. Phys. Oceanogr.,
29, 351–365.

Stocker, T. F., and O. Marchal, 2000: Abrupt climate change in the
computer: Is it real? Proc. Natl. Acad. Sci., 97, 1362–1365.

Stommel, H., 1961: Thermohaline convection with two stable regimes
of flow. Tellus, 13, 224–230.

——, and W. Young, 1993: The average T–S relation of a stochas-
tically-forced box model. J. Phys. Oceanogr., 23, 151–158.

Stone, P. H., and Y. P. Krasovskiy, 1999: Stability of the interhemi-
spheric thermohaline circulation in a coupled box model. Dyn.
Atmos. Oceans., 29, 415–435.

Timmermann, A., and G. Lohmann, 2000: Noise-induced transitions
in a simplified model of the thermohaline circulation. J. Phys.
Oceanogr., 30, 1891–1900.

Titz, S., T. Kuhlbrodt, S. Rahmstorf, and U. Feudel, 2001: On fresh-
water-dependent bifurcations in box models of the interhemi-
spheric thermohaline circulation. Tellus, in press.

Tziperman, E., 2000: Proximity of the present-day thermohaline cir-
culation to an instability threshold. J. Phys. Oceanogr., 30, 90–
104.

Wang, X., P. H. Stone, and J. Marotzke, 1999: Global thermohaline
circulation. Part I: Sensitivity to atmospheric moisture transport.
J. Climate, 12, 71–82.

Weaver, A., and T. M. C. Hughes, 1992: Stability and variability of
the thermohaline circulation and its link to climate. Trends Phys.
Oceanogr., 1, 15–70.

Wright, D. G., T. F. Stocker, and D. Mercer, 1998: Closures used in
zonally averaged ocean models. J. Phys. Oceanogr., 28, 791–
804.


